Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices
نویسندگان
چکیده
We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.
منابع مشابه
Incomplete Factorization Constraint Preconditioners for Saddle-point Matrices
We consider the application of the conjugate gradient method to the solution of large symmetric, indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerica...
متن کاملProbing Methods for Saddle-point Problems
Abstract. Several Schur complement-based preconditioners have been proposed for solving (generalized) saddle-point problems. We consider matrices where the Schur complement has rapid decay over some graph known a priori. This occurs for many matrices arising from the discretization of systems of partial differential equations, and this graph is then related to the mesh. We propose the use of pr...
متن کاملThe Antitriangular Factorization of Saddle Point Matrices
Mastronardi and Van Dooren [this journal, 34 (2013) pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorisation for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated in...
متن کاملAn Implicit Approximate Inverse Preconditioner for Saddle Point Problems
We present a preconditioner for saddle point problems which is based on an approximation of an implicit representation of the inverse of the saddle point matrix. Whereas this preconditioner does not require an approximation to the Schur complement, its theoretical analysis yields some interesting relationship to some Schurcomplement-based preconditioners. Whereas the evaluation of this new prec...
متن کاملA New Analysis of Block Preconditioners for Saddle Point Problems
We consider symmetric saddle point matrices. We analyze block preconditioners based on the knowledge of a good approximation for both the top left block and the Schur complement resulting from its elimination. We obtain bounds on the eigenvalues of the preconditioned matrix that depend only of the quality of these approximations, as measured by the related condition numbers. Our analysis applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 27 شماره
صفحات -
تاریخ انتشار 2006